Search results for "Radial basis function network"
showing 7 items of 7 documents
Classification and retrieval on macroinvertebrate image databases
2011
Aquatic ecosystems are continuously threatened by a growing number of human induced changes. Macroinvertebrate biomonitoring is particularly efficient in pinpointing the cause-effect structure between slow and subtle changes and their detrimental consequences in aquatic ecosystems. The greatest obstacle to implementing efficient biomonitoring is currently the cost-intensive human expert taxonomic identification of samples. While there is evidence that automated recognition techniques can match human taxa identification accuracy at greatly reduced costs, so far the development of automated identification techniques for aquatic organisms has been minimal. In this paper, we focus on advancing …
A mesh less approch based upon Radial basis function Hermite collocation method for predicting the cooling and the freezing times of foods
2005
This work presents a meshless numerical scheme for the solution of time dependent non linear heat transfer problems in terms of a radial basis function Hermite collocation approach. The proposed scheme is applied to foodstuff's samples during freezing process; evaluation of the time evolution of the temperature profile along the sample, as well as at the core, is carried out. The moving phase-change zone is identified in the domain and plotted at several timesteps. The robustness of the proposed scheme is tested by a comparison of the obtained numerical results with those found using a Finite Volume Method and with experimental results.
Learning to Approach a Moving Ball with a Simulated Two-Wheeled Robot
2006
We show how a two-wheeled robot can learn to approach a moving ball using Reinforcement Learning. The robot is controlled by setting the velocities of its two wheels. It has to reach the ball under certain conditions to be able to kick it towards a given target. In order to kick, the ball has to be in front of the robot. The robot also has to reach the ball at a certain angle in relation to the target, because the ball is always kicked in the direction from the center of the robot to the ball. The robot learns which velocity differences should be applied to the wheels: one of the wheels is set to the maximum velocity, the other one according to this difference. We apply a REINFORCE algorith…
A NEURAL NETWORK PRIMER
1994
Neural networks are composed of basic units somewhat analogous to neurons. These units are linked to each other by connections whose strength is modifiable as a result of a learning process or algorithm. Each of these units integrates independently (in paral lel) the information provided by its synapses in order to evaluate its state of activation. The unit response is then a linear or nonlinear function of its activation. Linear algebra concepts are used, in general, to analyze linear units, with eigenvectors and eigenvalues being the core concepts involved. This analysis makes clear the strong similarity between linear neural networks and the general linear model developed by statisticia…
Evaluating the performance of artificial neural networks for the classification of freshwater benthic macroinvertebrates
2014
Abstract Macroinvertebrates form an important functional component of aquatic ecosystems. Their ability to indicate various types of anthropogenic stressors is widely recognized which has made them an integral component of freshwater biomonitoring. The use of macroinvertebrates in biomonitoring is dependent on manual taxa identification which is currently a time-consuming and cost-intensive process conducted by highly trained taxonomical experts. Automated taxa identification of macroinvertebrates is a relatively recent research development. Previous studies have displayed great potential for solutions to this demanding data mining application. In this research we have a collection of 1350 …
Application of learning pallets for real-time scheduling by the use of radial basis function network
2013
The expansion of the scope and scale of products in the current business environments causes a continuous increase in complexity of logistics activities. In order to deal with this challenge in planning and control of logistics activities, several solutions have been introduced. One of the most latest one is the application of autonomy. The paradigm of autonomy in inbound logistics, can be reflected in decisions for real-time scheduling and control of material flows. Integration of autonomous control with material carrier objects can realize the expected advantages of this alternative into shop-floors. Since pallets (bins, fixtures, etc.) are some common used carrier objects in logistics, t…
Online fitted policy iteration based on extreme learning machines
2016
Reinforcement learning (RL) is a learning paradigm that can be useful in a wide variety of real-world applications. However, its applicability to complex problems remains problematic due to different causes. Particularly important among these are the high quantity of data required by the agent to learn useful policies and the poor scalability to high-dimensional problems due to the use of local approximators. This paper presents a novel RL algorithm, called online fitted policy iteration (OFPI), that steps forward in both directions. OFPI is based on a semi-batch scheme that increases the convergence speed by reusing data and enables the use of global approximators by reformulating the valu…